Melbourne

Meeting the demand for safer, more efficient and capable railways

While digitalisation can realise great advances, overcoming application factors in digital train control involved takes smart engineering.

Although comprising a number of different, discrete technologies, digital train control systems represent one of the most significant changes in 100 years of rail signalling.

Older systems across Australia and New Zealand are undergoing a fundamental and wholescale shift as railway operators strive to maximise performance and capacity.

This presents a tremendous opportunity to improve rail capability and competitiveness across existing networks, extensions and new lines in both metro and mainline applications.

Replacing line-side multi-aspect colour light signalling with Digital Train Control (DTC) systems promises to bring improvements in line capacity, connections, reduce journey times and improve safety and performance, among an array of other benefits.

In Australia, there have been disparate drivers for the adoption of DTC, however increasingly these technologies enable significant innovation, both in freight operations, with Rio Tinto’s fully automated railway, and in passenger services with the fully automated Sydney Metro Northwest.

David Milburn, GHD global leader – Digital Train Control explains how transport organisations can maximise value from digital investments regardless of the specific rail technology and the context of its application. Milburn has decades of experience in leading Train Control and Systems Engineering (SE) teams for major programs, and has been successfully applying SE techniques to railway projects since 1996. Milburn has worked on a range of signalling systems and related standards, specialising in transmission-based signalling such as ETCS and CBTC.

“We help clients to become informed purchasers. Each technology has distinctive characteristics appropriate to different train control scenarios and our knowledge in both DTC and legacy signalling systems enables us to identity and manage risk in a safety critical environment.”

As an umbrella term, DTC includes systems such as Automatic Train Operation (ATO), Automatic Train Protection (ATP), European Train Control System (ETCS), and Communications Based Train Control (CBTC), among other variants. Each network will ultimately find a solution that fits best with their operation and funding highlighted Milburn.

“We provide agnostic solutions and advice to help clients find what best fits their particular needs and help them to navigate different products and different suppliers to get the most appropriate solutions.

“This involves selecting the right concept for their particular railway, and then providing technical leadership and project engineering to bring that into the physical infrastructure,” said Milburn.

There are various stages of automation in digital train control.

STARTING FROM SAFE
While railways have had more than 100 years of history to determine the best practice for traditional lineside signalling, the relatively new status of DTC requires a risk-based approach to safety that works to identify and minimise any potential unplanned events.

“Most operators have spent decades working in a particular manner. The rules have been developed over a long period of time, often as a reaction to incidents and accidents and to accommodate a particular technology. One of the key challenges when you’re introducing new technology is to identify and manage all the potential risks before day one of operation,” said Milburn.

GHD works with operators and suppliers to develop specifications and standards that can be applied in the implementation of DTC systems in Australia.

“We can work with clients to support them in developing their concept of operations, how their system is going to work, provide analysis to make sure that they have got the right concept, and develop engineering rules, and operational rules to efficiently and safely manage the system and to meet the operational concept.”

While there will often be local variations in developing standards for train control systems, GHD can draw on its global network, in collaboration with partners, to define and implement DTC systems to meet the needs of a particular application.

Already, 42 cities run 64 fully automated metro lines, with the first mainline- passenger with ATO over ETCS service on the Thameslink project in London, in March 2018. In total, there are over 100,000 kilometres of ETCS equipped infrastructure around the world.

Taking lessons from these projects, GHD is advancing its approach to efficiently support the delivery of DTC systems projects in Australia.

To ensure that depth of knowledge can be applied to each project, GHD has worked to build up a talent pool of those who have hands-on knowledge of application and integration issues in other contexts where DTC has already been applied.

“Even when the technology is successfully deployed, in some cases it can’t actually be fully implemented because the railway administration hasn’t completed the necessary organisational and business change, or the training and competence of people,” said Milburn.

David Milburn has worked on a number of digital train control projects around the globe.

GLOBAL EXPERIENCE – LOCAL EXPERTISE
Understanding both the human and technological side of DTC systems has led to recognition that having the right expertise is key to driving successful and transformational DTC systems. This is what GHD is providing in Australia, whether playing the role of an independent certifier, as GHD did in the Sydney Metro Northwest project, project management, business case development, or systems integration.

“The first part of that is creating a pool of resource and pool of expertise,” said Milburn. “A lot of clients are encountering this technology for the first time. They are working on projects without the comfort of having first hand previous experience but we are building a team of people who have successfully deployed these very specialist technologies.”

While train operators may have a wealth of expertise in traditional signalling technologies, DTC systems require a new set of competencies, both during installation and operational phases.

There is an acute skills shortage in Australia when it comes to DTC. GHD has been working to develop a local knowledge base and provide the necessary upskilling and support to signalling engineers in Australia. Where appropriate, GHD has recruited engineers with a proven track record on successfully completed overseas projects.

“We’re working hard to establish a training facility for digital train technologies, both for generic approaches and principles as well as more detailed competencies, and courses for maintenance and design.

“At the moment, there’s a huge gap between the number of projects and the resources required in Australia,” said Milburn.

AVOIDING THE MISTAKES OF THE PAST
With a number of DTC systems already in operation, each with their subtle different operational methodologies, and a number of projects in their early stages, the value of standardisation cannot be understated. This is vital to ensure that Australia does not repeat the mistakes made in the last century by having approaches unique to each state or operator. Already, Milburn is seeing Australia head in this direction.

“We’ve seen a number of instances in Australia, where organisations have taken off-the-shelf ETCS technology, and then worked with the supplier to add additional functionality important to their respective needs,” said Milburn.

“For example, the introduction of ATO over ETCS, with the introduction of satellite positioning. These are all functions outside of the European standards at the moment but it would be hugely beneficial for the industry to work together to avoid significant and costly problems in the future”.

The establishment of ETCS was aimed at overcoming these issues in Europe, where, for example, trains on the Paris – Brussels – Cologne line traversed seven different train control systems, from more than 20 train control systems in the EU.

“Australia now has the opportunity to standardise so that you have common competencies across state and organisational boundaries.”

Alliance chosen for Tonkin Gap rail and road project

An alliance of contractors have been selected to build the Tonkin Gap project, which will deliver enabling works for Metronet’s Morley-Ellenbrook Line, in Perth.

The Tonkin Gap Alliance, made up of BMD, Georgiou, WA Limestone, BG&E, and GHD, will expand the section between Collier Road and Dunreath Drive to construct a three-lane, freeway-standard road.

The Morley-Ellenbrook line will partly run along the middle of the Tonkin Highway, and the Tonkin Gap Alliance will build the dive structures to allow the building of the railway to enter and exit the middle of the highway.

Other modifications will occur between Railway Parade and Hepburn Avenue, and will involve the replacement of the existing Broun Avenue flyover.

WA Minister for Transport Rita Saffioti said that the works package will improve mobility in Perth’s eastern suburbs.

“Road and rail projects will play a key part to WA’s economic recovery going forward. This project will fix one of Perth’s most congested roads while laying the groundwork for the Metronet Morley-Ellenbrook Line,” Saffioti said.

“Tonkin Gap is a major component of the train line to Ellenbrook, with two dive structures and the foundation for the rail included in the project scope.”

Saffioti said the government was looking to infrastructure projects to stimulate the state’s economy.

“Together with new Bayswater Station procurement, we now have two out of three major contracts for Morley-Ellenbrook Line at an advanced stage,” she said.

“Building this project, combined with construction of other nearby major projects like the new Bayswater Station and Morley-Ellenbrook Line, will help support the WA economy through some tough times ahead.”

The project is jointly funded by the WA state government and the federal government, with the federal government contributing 80 per cent of project funds.

Federal Minister for Population, Cities and Urban Infrastructure Alan Tudge said that the project is part of an infrastructure-led recovery.

“Our $100 billion infrastructure pipeline is setting the foundations for economic recovery on the other side of the COVID-19 crisis,” he said.

“In addition, it will create thousands of new jobs at a time when what we want is to get Australians back to work.”

WA Premier Mark McGowan also noted that progressing urban infrastructure projects will have flow on effects.

“Our record investment in major road projects and Metronet will set up our suburbs for the long term and benefit Western Australians, now and into the future,” McGowan said.

“In times like these it’s important we continue to progress the projects that will provide work for local businesses and keep workers in their jobs – this will ultimately support the state’s wider economy.”

Digital engineering becoming more important than ever

While digital engineering has long been touted as the next technology that can create, manage, and utilise data for infrastructure development, the coronavirus (COVID-19) pandemic has brought it even more into focus.

With workforces forcibly distributed as remote working directives took effect, the value of having a rich virtual building information model (BIM) to enable seamless collaboration across physically distanced workforces has never been clearer.

Consulting company GHD has already exploited the value of digital ways of working in many projects, and recently in its work on the Forrestfield-Airport Link project – part of the Metronet project in Perth – within the Salini Impregilo and NRW Joint Venture.

According to GHD’s Rail Design Lead on the project, Martin Harle, using digital tools such as BIM, geographic information systems (GIS), analytics, coding, and automation, the team was able to eliminate clashes between different models by coordinating design through one model.

“Using this technology we are able to automate clash checks across multiple complex disciplines, highlighting design coordination issues in real time,” he said. “It helps to pre-empt and resolve potential construction problems during the design process, rather than dealing with unexpected issues as they occur on site.”

Avoiding duplication and replication, the BIM system enables costs to be reduced at the design phase. This not only improves processes at the construction site, but also enables suppliers to have a clearer idea of the concepts their assets will be working in.

“So far, on the Forrestfield-Airport Link, rail track and overhead line equipment has been designed and modelled 8.5 times faster and 1152 hours have been saved in automating 180 Navisworks exports,” said Martin.

Incorporating digital tools early on in the construction of a project can also lead to efficiencies once the project is operational. At the end of the design and construct phase, asset information can be handed over to the operator to promote ongoing efficiency.

The insights that GHD has gathered from this project have been used to advantage on other projects, including the Sydney Metro. And the lessons have wider implications through the Digital Engineering Code of Practice which will be applied nationally through the Rail Industry Safety and Standards Board (RISSB), which GHD helped design. GHD BIM lead – Western Australia and co-author of the code Belinda Thompson, said the benefits of the code are broad.

“By adopting Digital Engineering processes, increasing the accuracy of information and automating the data exchange processes, we can improve safety, reduce risk, achieve greater cost certainty and improved sustainability.”

The full Digital Engineering article can be found here: https://www.ghd.com/en/about-us/digital-engineering-in-action-driving-change-in-delivery-of-rail-projects.aspx.

Catenary for Forrestfield-Airport Link: Digital Engineering used in Safety-in-Design. Credit: GHD.