Engineering, Passenger Rail, Research & Development, Rolling stock & Rail Vehicle Design, Signalling & Communications, Technology and IT

New South Wales pushes on with rail automation

Rail Express speaks with experts from Alstom about the signalling revolution underway in New South Wales, and how modern technology helps drive capacity and performance.

 


The opening of Sydney Metro Northwest in May represented the first revenue services for a completely driverless passenger train in Australia.

The new line’s Alstom trains operate at the highest grade of automation as defined by the International Association of Public Transport, which defines five Grades of Automation (GoA) as follows:

  • GoA 0 is traditional on-site train operation, without any automatic systems assisting the driver or controlling the vehicle.
  • GoA 1 sees the train driver remain in full control, while being advised by an Automatic Train Protection (ATP) system, which checks the train’s speed against what is permitted by the signalling, and can help adjust speeds to stick to a timetable or improve capacity.
  • GoA 2 uses ATP and Automatic Train Operation (ATO), which drives the train during regular operations, but still uses a driver to control doors and operate the train in the event of a disruption.
  • GoA 3 removes the driver, leaving a train attendant to open and close the doors and operate the train in the event of a disruption.
  • GoA 4 is a completely automatic train system, with no staff onboard. Movement and door operations are all controlled automatically.

With GoA 4 now implemented on the Sydney Metro, Transport for NSW continues its rollout of GoA 1 through its ongoing ATP program across the electrified Sydney Trains and NSW TrainLink network, including the South Coast Line as far as Kiama, the Blue Mountains Line to Lithgow, and the Central Coast / Newcastle Line.

Rollout includes installation of balises in the rail corridor between existing trackside infrastructure to monitor train speeds, and the installation of equipment on board all suburban and Intercity train fleets, and is set to continue until at least 2020.

Meanwhile, the state will incorporate the ATP program and achieve GoA 2 on the Sydney Trains network through its Digital Systems program. Announced last year, Digital Systems is an $880 million investment in ETCS Level 2 technology, ATO, and a Traffic Management System for more effective incident management and service regulation across the network.

Alstom has worked with Transport for NSW on its ATP program for the last seven years, it delivered the rollingstock and signalling for Sydney Metro Northwest, and it is one of the top candidates in the ongoing procurement of the Digital Systems platform, which is expected to roll out in stages from the early 2020s.

With all that in mind, Alstom’s ETCS Solutions Director Vincent Passau gives Rail Express his thoughts on how operators can use ATO as a tool to improve their operations.

“When we speak about ATO, it is not simply an onboard function. It is the way you regulate and optimise the capacity of your network,” he says.

“An integrated Traffic Management System (TMS) gives a global view of the complete performance of your system; you know where your trains are, how they are behaving, where they are in comparison to the timetable.”

Passau says the accurate tracking of trains provided through modern onboard and trackside technology further aids the performance of a TMS.

“Iconis [Alstom’s mainline TMS solution] is working well in combination with ETCS technology, because the data being sent by ETCS are giving us very accurate information about the train. Not just the track section the train is on, but its exact location, speed, and its mode of operation, so our system can detect not just if a train is late, but why it is late, and adjust automatically.”

The technology allows the transfer of instructions in the other direction, telling a train to speed up or slow down within safe limits, to better comply to its timetable and to improve capacity and performance on a network-wide level.

“Once the train receives the information from the control centre, it will have the expected speed profile and the arrival time at the next station, and the ATO will compute a speed profile to achieve that within the safety limits, and while using energy in the most efficient way.”

At the control centre, Alstom’s Iconis system incorporates automatic path management functions with the goal of achieving greater efficiency on large networks with dense traffic.

Implemented in Bologna, Italy, the system automatically routed 80 per cent of traffic, and achieved a 15 per cent capacity boost. “Because you have better stability, you can increase your margins and operate your network in the most efficient way,” Passau says.

Passau says Alstom’s systems, as well as its onboard and trackside technologies, are designed with the potential for a transition between GoA 2 and GoA 4 in mind.

“Every transportation segment of rail is going towards ATO, and then we see it progressively moving from GoA 2 with a driver, to GoA 3, where it is driverless but you have a person on the train in case of incidents, or to support the passengers should they need it, up to the unattended Grade of Automation 4.

“The important element is moving fromGoA 2 to GoA 4, and key to this is replacing the driver not so much with something that can drive the train, but with something that can react to unexpected situations.”

Local track record with global support

“We’ve built up a reputation for solutions in rollingstock, signalling, systems and services, and we like to think we can take very small components – effectively products and their sub-components – to standalone solutions, all the way to bundled offers of two or more of our solutions,” Alstom Australia’s Customer Director NSW Alan Trestour says.

In Melbourne, Alstom continues to deliver its Metropolis trainsets. For the Sydney CBD & South East Light Rail project, Alstom is delivering traction power substations, overhead catenary systems, rollingstock, signalling, passenger information systems and the ongoing maintenance of those solutions.

Alstom delivered and will maintain the new rollingstock for the recently-opened Sydney Metro Northwest, and will also maintain the CBTC signalling solution it provided for the new line.

Alstom’s Mainline Platform VP Jean-Marc Nizet, visiting Australia in April, reflected on how the company was responding to an increased desire for modern signalling technology around the world.

“Just as you have in Australia, there is a growing demand all over the place for signalling for railways,” he told Rail Express. “The biggest challenge we face as an industry is having the competence to sustain all that.

“To respond to this we have our global strategy, which first aims to provide our customers with strong local teams, to help with all aspects of a project – whether it’s engineering, maintenance or design – but to then support that team with global network of knowledge bases.”

Leave a Reply