Cohesive approach to research and development needed to maximise rail investment

A new report will provide the rail industry with recommendations to ensure that research leads to a thriving technology and innovation culture within the rail industry.

The Australasian Railway Association (ARA) has commissioned L.E.K. Consulting to benchmark the industry’s investment in and use of technology.

The report comes as one of the key sponsors of research in the rail industry closes down, the Rail Manufacturing Cooperative Research Centre (CRC). The ARA highlights that CRCs, including the previous Rail CRC and Rail Innovation CRCs have driven innovation, and without the Rail Manufacturing CRC there will be a “significant void”.

By sponsoring cross-sector research and collaboration between researchers and industry, CRCs have overcome one of the key deficiencies in Australian research and development (R&D), a lack of collaboration between industry and research. This lack was identified as the lowest in the OECD by the federal government’s National Innovation and Science Agenda Report.

Another challenge for innovation and technology adoption in the rail industry is the lack of alignment across the sector. The disparate aims of state and federal governments, purchasers, suppliers, and researchers has created a disconnect between planning, action, support, and adoption, the ARA write in their briefing note.

The ARA highlights that a cohesive business case is needed to support investment in rail technology and innovation.

As part of the research project, the L.E.K. report will benchmark investment, development and adoption of technology, outline the benefits, and challenges for the development and adoption of technology, review and identify solutions and make recommendations.

The potential of coherent investment in rail technology and innovation has the potential to improve productivity in the sector, creating jobs and economic growth. In addition, local investment in R&D can increase local capacity and maintain areas of competitive advantage.

The ARA highlights that the current investment pipeline represents an opportunity for investment in R&D, that can maximise efficiency in the delivery of rail infrastructure.

The report follows increasing calls at a federal level to support local suppliers and producers. Industry Minister Karen Andrews noted that there is the potential to support local supply chains.

“This is about embracing the incredible quality of Australian-made products – products that nations around the world associate with being top-notch.”

Shadow Infrastructure Minister Catherine King said that calls for locally produced goods should extend to infrastructure projects.

“Employing Australian workers and using Australian-made materials on Government-funded infrastructure projects creates more jobs all along the supply chain and ensures that Government investment remains in our community, rather than flowing to overseas companies.

“This should include building trains here and working with the States and Territories to smooth out production, lower costs and build skills and capability.”

ATO on regional passenger trains trial to go ahead in 2021

A world-first test of automatic train operation (ATO) on a regional train line has received a prestigious award from the German government.

The German Federal Ministry of Economics awarded Alstom with the Innovation Prize for Regulatory Sandboxes for its planned trial of ATO in daily operation of regional passenger trains in Braunschweig.

The test is planned for 2021 and will be conducted by Alstom in partnership with the Regional Association of the greater area of Braunschweig, the German Aerospace Center (DLR) and the Technical University of Berlin (TU Berlin).

Jörg Nikutta, managing director of Alstom in Germany and Austria, said the prize recognised Alstom’s focus on innovation.

“In the future, automated trains will optimize regional rail operations, reduce energy consumption, and increase ride comfort. In this way, highly automated driving will make a decisive contribution to climate protection and contribute to the development of a modern, attractive railway system. Following the development and successful testing of the world’s first hydrogen train Coradia iLint, Alstom is once again the innovative driver in rail transport with the pilot for regional trains in automated operation,” he said.

The trial will be conducted with two Coradia Continental regional trains, owned by the regional rail operator for greater Braunschweig. The trains will be equipped with an European Train Control System (ETCS) and ATO equipment to enable the trains to travel automatically.

The trial will involve two different grades of automation (GoA). In regular passenger operation the trains will operate at GoA3, meaning the trains will be fully autonomous but with an attendant who can step in if there is an emergency. In shunting the trains will be operated fully remotely, at GoA4.

Birgit Milius, head of the Department of Railway Operations and Infrastructure at TU Berlin said that the trail would be an indication of how rail will operate in the future.

“ATO, or Automatic Train Operation, is one of the most exciting challenges in the railway industry. It gives us the opportunity to shape and significantly change the operational management of the future. But a lot of research is still needed before this is the case, and I am very pleased to be working with Alstom on this project,” she said.

Findings from the tests will inform the legal and regulatory framework for ATO. Alstom will use its expertise in ATO for metro trains and research into autonomous freight trains to guide the project.

 

Report highlights challenges and opportunities for rail’s response to COVID-19

Global technology provider Thales has released a new report highlighting the challenges of and solutions to the current coronavirus (COVID-19) crisis in the rail transport sector.

Acknowledging that in many cases transport networks have been on the front line of responding to COVID-19, the report’s authors write that transport operators will need to develop new ways of operating.

“There is no historical precedent for this, no model to work from. The challenge is huge,” the report highlights.

Since the arrival of COVID-19 onto the global stage, a range of challenges have emerged for transport operators. The report categorises these into four sectors: revenue, health, mobility, and climate challenges.

For operators which rely on fare revenue for operations, rapid drops in ridership numbers have had a severe financial impact. In addition, extra cleaning and the introduction of social distancing measures has increased costs, while restrictions on capacity have limited revenue.

Transport has also been identified as an area of concern when it comes to the transmission and spread of COVID-19, placing extra responsibilities on transport operators to ensure the health of their passengers and staff.

Maintaining mobility while staff work from home and cybersecurity threats increase is also a challenge for operators.

Finally, climate challenges have not been altered by COVID-19, and the rail sector continues to play a part in helping communities achieve their emissions goals.

To meet these challenges, Thales has catalogued a range of digital tools which can assist transport operators. These range from using cameras to detect body temperature and compliance with mask wearing, and integrating traffic management systems to reduce crowding by smoothing connections between modes and services, to technologies for remote operations and infrastructure maintenance.

While some of these solutions are in direct response to the COVID-19 crisis, in other cases, the pandemic has served to highlight areas where existing issues need to be overcome. For example, the adoption of flexible train services to adapt to changes in demand and the provision of dynamic passenger information systems.

Amid these uncertainties, Thales highlights that rail operators should start asking more fundamental questions about their services to ensure that once the immediate crisis is over, they continue to provide adaptive and appropriate mobility solutions.

“For now, the priority is restoring services and rebuilding trust,” write the report’s authors. “Looking to the future, the trends point to a need for next-generation transportation systems. Access to secure, diverse and reliable sources of mobility will be vital not only to ensure long-term economic recovery, but also to address wider societal goals.”

Read the report here: https://thalesgroup-myfeed.com/ThalesTransport_Covid19_Whitepaper?elqCampaignId=458.

GS1

Let’s get moving

2019 was the year to get on board with Project i-TRACE. Bonnie Ryan from GS1 Australia highlights the importance of standardising the capture of data and is calling on the rail industry to get moving on digitalisation.

The Australian rail industry is preparing to digitalise the management of rail assets for increased efficiency around the network and to move more customers and freight in cities that are becoming more congested.

Bonnie Ryan, director of freight, logistics, and industrial sectors at GS1 Australia said the entire transport sector acknowledges that a critical focus should be on data regulation. Rail operators and suppliers are increasingly appreciating the benefits that digitalisation brings and understanding the dangers of ignoring its possibilities.

GS1 barcode numbers issued by an authorised GS1 organisation are unique, accurate, and based on current global standards. GS1 Australia works with key stakeholders in the Rail industry in order to improve supply chain management and the use of standards and processes both locally and globally. Through an industry-wide initiative pioneered by GS1 Australia and the Australasian Railway Association, Project i-TRACE is enhancing the digitalisation of operational processes.

THE YEAR TO GET MOVING
2019 was regarded as the year of implementation for Project i-TRACE. The traceability initiative firstly involves standardising the capture of data relating to all assets and materials in the rail industry, and by doing so, ensures a critical foundation upon which the rail industry can build its digital capabilities.

“Last year it was time to get on board, now we need to get moving,” Ryan said. Despite current restrictions and challenges in the current economic market, she said the industry is still active and bringing its business needs to the forefront of discussions. The ARA Project i-TRACE rail industry group is aiming to improve supply chain efficiency and visibility of operations by developing and adopting GS1 global standards. Ryan said the industry group is collaborating to determine how businesses can best navigate through the current climate and what further engagement and support is needed to help the rail suppliers adopt data capture technologies.

Communication is key, according to Ryan, in spreading the message that technologies including barcoding and RFID tagging will be fundamental components to a more efficient business and industry. The Project i-TRACE industry working group are further discussing how the industry is progressing with implementation. Ryan said measuring progress is underway. Operators will be surveying their suppliers in an effort to see where they are at with Project i-TRACE implementations. There is a need to instil a sense of urgency to action GS1 standards.

INDUSTRY ADOPTION
Project i-TRACE has at its core a focus on traceability. Ryan said i-TRACE will be implemented as an enabler for systems and is a very important part of the future of the rail business.

The Australian Transport and Infrastructure Council has affirmed the critical role the freight sector plays in providing essential supplies and services. Rail freight services stretch across state borders, servicing finely tuned supply chains across the nation and are the gateway to global markets. Ryan said it’s more critical than ever to review efficient supply chain management.

Ryan said for the rail, freight and logistics industry it has been business as usual, however unprecedented demand and restrictions to regular operations has allowed open-minded thinking towards better risk management and safety procedures. She said from conversations with executives in the rail sector, more companies are open to talking about technology initiatives that will help deliver business objectives in the long-term.

“We are engaged with all of Australia’s major rail operators. They all have representatives that sit on the Project i-TRACE industry work group and they’re all very committed to better control their assets, reduce costs and enhance productivity,” Ryan said. Major operators have different work to do than suppliers, as organising their systems to accept new data that they haven’t had before can be a challenge. Ryan said that operators can learn from one another to see the benefit of enhanced digital capabilities, but they’re all at different stages and have internal processes and data systems to review first.

V/Line was one of the first to adopt and implement i-TRACE in its supply chain processes to help achieve improved productivity outcomes.

“V/Line was early to adopt GS1 standards and continue to see success, however I’m proud to say that all major operators also have their own plans and projects after rapid adoption last year,” Ryan said.

WHAT STAGE IS THE RAIL INDUSTRY AT?
Ryan said the rail industry can learn from other sectors such as the retail and food industry, who are charging ahead with industry-wide standards, guidelines and solutions.

“Rail is different because movement of fast-consumer goods doesn’t apply. However, you don’t see pens and paper in major food retailers’ supply chains. Rail needs to build on its digital capabilities,” Ryan said.

With significant rail infrastructure investments earmarked for a range of projects across the country, embedding i-TRACE in the early construction phases in these projects is critical to delivering cost benefits over the life cycle of the asset, and avoiding the need to retrofit digital capabilities at a later stage.

BUILDING RAIL’S INDUSTRY CAPABILITIES
Ryan said rail is adopting technology including machine learning, artificial intelligence, and autonomous trains. She said the back-end systems and data management needs to be as impressive as railway innovation.

Australasian rail industry manufacturers, suppliers and service providers want to see investments in infrastructure innovation and that will improve the efficiency of the wider network.

Ryan said in order to deliver front-end innovation, having a good digital grounding will be critical to effectively exploiting these capabilities.

“The rail sector knows the importance of digital capabilities, and that’s why operators and suppliers are engaged in i-TRACE,” Ryan said.

She understands due to the scale of operations in the rail sector, the process of implementing global standards is a progressive working task.

“There will be a tipping point in a few years. i-TRACE will no longer be a project but will be business as usual,” Ryan said.

A critical steppingstone to build on rail’s digital capabilities will be building an appropriate digital framework.

Ryan adds not all data is equal, people can be sceptical about where it comes from and if it’s accurate so the only way to trust data is to have good governance and a framework so that you can measure data quality. The accuracy and validity of the data plays a crucial role in furthering downstream technological innovation.

“Having good governance, framework and set of standards in which to apply and adhere to gives the industry the platform to achieve success,” Ryan said.

Right now, Ryan is encouraging operators and suppliers to identify materials, register with GS1 and put the unique GS1 compliant codes on materials and products.

“That is essentially the first step, to begin the alignment of data,” Ryan said.

Ryan is proud to see rail working towards end to end traceability. i-TRACE benefits include improved maintenance and repair operations, reducing costs by automating operational procedures and improving traceability which is fundamental for through life support operations.

Melbourne

Meeting the demand for safer, more efficient and capable railways

While digitalisation can realise great advances, overcoming application factors in digital train control involved takes smart engineering.

Although comprising a number of different, discrete technologies, digital train control systems represent one of the most significant changes in 100 years of rail signalling.

Older systems across Australia and New Zealand are undergoing a fundamental and wholescale shift as railway operators strive to maximise performance and capacity.

This presents a tremendous opportunity to improve rail capability and competitiveness across existing networks, extensions and new lines in both metro and mainline applications.

Replacing line-side multi-aspect colour light signalling with Digital Train Control (DTC) systems promises to bring improvements in line capacity, connections, reduce journey times and improve safety and performance, among an array of other benefits.

In Australia, there have been disparate drivers for the adoption of DTC, however increasingly these technologies enable significant innovation, both in freight operations, with Rio Tinto’s fully automated railway, and in passenger services with the fully automated Sydney Metro Northwest.

David Milburn, GHD global leader – Digital Train Control explains how transport organisations can maximise value from digital investments regardless of the specific rail technology and the context of its application. Milburn has decades of experience in leading Train Control and Systems Engineering (SE) teams for major programs, and has been successfully applying SE techniques to railway projects since 1996. Milburn has worked on a range of signalling systems and related standards, specialising in transmission-based signalling such as ETCS and CBTC.

“We help clients to become informed purchasers. Each technology has distinctive characteristics appropriate to different train control scenarios and our knowledge in both DTC and legacy signalling systems enables us to identity and manage risk in a safety critical environment.”

As an umbrella term, DTC includes systems such as Automatic Train Operation (ATO), Automatic Train Protection (ATP), European Train Control System (ETCS), and Communications Based Train Control (CBTC), among other variants. Each network will ultimately find a solution that fits best with their operation and funding highlighted Milburn.

“We provide agnostic solutions and advice to help clients find what best fits their particular needs and help them to navigate different products and different suppliers to get the most appropriate solutions.

“This involves selecting the right concept for their particular railway, and then providing technical leadership and project engineering to bring that into the physical infrastructure,” said Milburn.

There are various stages of automation in digital train control.

STARTING FROM SAFE
While railways have had more than 100 years of history to determine the best practice for traditional lineside signalling, the relatively new status of DTC requires a risk-based approach to safety that works to identify and minimise any potential unplanned events.

“Most operators have spent decades working in a particular manner. The rules have been developed over a long period of time, often as a reaction to incidents and accidents and to accommodate a particular technology. One of the key challenges when you’re introducing new technology is to identify and manage all the potential risks before day one of operation,” said Milburn.

GHD works with operators and suppliers to develop specifications and standards that can be applied in the implementation of DTC systems in Australia.

“We can work with clients to support them in developing their concept of operations, how their system is going to work, provide analysis to make sure that they have got the right concept, and develop engineering rules, and operational rules to efficiently and safely manage the system and to meet the operational concept.”

While there will often be local variations in developing standards for train control systems, GHD can draw on its global network, in collaboration with partners, to define and implement DTC systems to meet the needs of a particular application.

Already, 42 cities run 64 fully automated metro lines, with the first mainline- passenger with ATO over ETCS service on the Thameslink project in London, in March 2018. In total, there are over 100,000 kilometres of ETCS equipped infrastructure around the world.

Taking lessons from these projects, GHD is advancing its approach to efficiently support the delivery of DTC systems projects in Australia.

To ensure that depth of knowledge can be applied to each project, GHD has worked to build up a talent pool of those who have hands-on knowledge of application and integration issues in other contexts where DTC has already been applied.

“Even when the technology is successfully deployed, in some cases it can’t actually be fully implemented because the railway administration hasn’t completed the necessary organisational and business change, or the training and competence of people,” said Milburn.

David Milburn has worked on a number of digital train control projects around the globe.

GLOBAL EXPERIENCE – LOCAL EXPERTISE
Understanding both the human and technological side of DTC systems has led to recognition that having the right expertise is key to driving successful and transformational DTC systems. This is what GHD is providing in Australia, whether playing the role of an independent certifier, as GHD did in the Sydney Metro Northwest project, project management, business case development, or systems integration.

“The first part of that is creating a pool of resource and pool of expertise,” said Milburn. “A lot of clients are encountering this technology for the first time. They are working on projects without the comfort of having first hand previous experience but we are building a team of people who have successfully deployed these very specialist technologies.”

While train operators may have a wealth of expertise in traditional signalling technologies, DTC systems require a new set of competencies, both during installation and operational phases.

There is an acute skills shortage in Australia when it comes to DTC. GHD has been working to develop a local knowledge base and provide the necessary upskilling and support to signalling engineers in Australia. Where appropriate, GHD has recruited engineers with a proven track record on successfully completed overseas projects.

“We’re working hard to establish a training facility for digital train technologies, both for generic approaches and principles as well as more detailed competencies, and courses for maintenance and design.

“At the moment, there’s a huge gap between the number of projects and the resources required in Australia,” said Milburn.

AVOIDING THE MISTAKES OF THE PAST
With a number of DTC systems already in operation, each with their subtle different operational methodologies, and a number of projects in their early stages, the value of standardisation cannot be understated. This is vital to ensure that Australia does not repeat the mistakes made in the last century by having approaches unique to each state or operator. Already, Milburn is seeing Australia head in this direction.

“We’ve seen a number of instances in Australia, where organisations have taken off-the-shelf ETCS technology, and then worked with the supplier to add additional functionality important to their respective needs,” said Milburn.

“For example, the introduction of ATO over ETCS, with the introduction of satellite positioning. These are all functions outside of the European standards at the moment but it would be hugely beneficial for the industry to work together to avoid significant and costly problems in the future”.

The establishment of ETCS was aimed at overcoming these issues in Europe, where, for example, trains on the Paris – Brussels – Cologne line traversed seven different train control systems, from more than 20 train control systems in the EU.

“Australia now has the opportunity to standardise so that you have common competencies across state and organisational boundaries.”

Further measures to reduce crowding across Sydney Trains

Sydney Trains will be taking extra steps to ensure crowding on the network does not return once patronage increases following the coronavirus (COVID-19) lockdown.

In responding to a report from the Auditor-General for NSW which found that platform crowding was a key strategic risk, a Sydney Trains spokesperson said that a raft of measures are being introduced.

“Sydney Trains is currently implementing a number of initiatives to help customers make informed decisions about physical distancing in accordance with NSW government advice,” said the spokesperson.

“These include increased visibility through signs and announcements on trains and at stations explaining physical distancing. Additional measures include a communication campaign targeting school children, managing Opal gates to space customers entering and leaving stations, new guidelines for passenger numbers on lifts, regular customer information announcements and social media messaging, and staff education to help guide customers safely around the network.”

In its report, the Auditor-General recommended that Sydney Trains and Transport for NSW (TfNSW) should address key data gaps in the operator’s understanding of where crowding was occurring.

“Sydney Trains do not have sufficient oversight to know if crowding is being effectively managed,” said the Auditor-General.

Although customer management plans exist for high-patronage stations, a lack of policy supporting the plans limited their effectiveness, the auditor-General found, and a centralised collection of data on crowding interventions did not exist, nor did Sydney Trains have a routine process for identifying whether crowding contributed to minor safety incidents.

Sydney Trains and TfNSW accepted the Auditor-General’s recommendations and have been instituting responses to limit crowding.

“In March last year, we saw the introduction of the $296 million world class Rail Operations Centre, with an integrated network of 11,000 digital cameras monitoring stations and concourses in real-time to help support crowd management and safety,” said a Sydney Trains spokesperson.

The Auditor-General also cited larger programs such as the More Trains More Services initiative as well as the building of Sydney Metro will alleviate network pressure in the longer term.

Research and technology programs are also looking at how to smoothen operations and changes customer behaviour. The Auditor-General found that some of these initiatives, such as reduced fare prices outside of the peak travel periods and improved wayfinding, needed to be evaluated to assess their value.

The effectiveness of measures to reduce crowding will be one way to encourage commuters to return to public transport. In the preliminary findings of a University of Sydney survey, public transport was found to be seen as significantly less comfortable than private cars, which could limit the use of trains and buses after COVID-19 restrictions are lifted, said associate professor Matthew Beck from the Institute of Transport and Logistics Studies.

“To avoid levels of congestion that exceed those experienced prior to COVID-19, governments need to encourage work from home as much as possible. Businesses also need to be flexible with remote working and think about how they might stagger the hours of the day staff travel to and from work.”

According to Sydney Trains, continuing normal services levels has allowed customers to physically distance on trains and platforms.

“We have also continued to run a full timetable with only minor adjustments, despite substantially reduced patronage across the network. This has created the best options for customers to physically distance within train carriages and at stations.”

Industry-government group to accelerate ATMS delivery

An industry-government oversight group has been formed for the introduction of the Advanced Train Management System (ATMS) on Australia’s interstate freight rail network.

With the system now operational between Port August and Whyalla and ready to be deployed between Tarcoola and Kalgoorlie, the industry-government reference group will streamline implementation between the Australian Rail Track Corporation (ARTC) and nine major rail freight businesses.

“I meet and consult with industry regularly and following discussions in March, the Australian government has agreed to support the establishment of the group to explore opportunities to accelerate the deployment of ATMS,” said Deputy Prime Minister and Minister for Infrastructure, Transport and Regional Development Michael McCormack.

The federal government has provided $110.8 in funding for the development of ATMS, which alleviates the reliance on trackside signalling infrastructure by using GPS navigation systems and mobile internet. The system was developed by Lockheed Martin on behalf of ARTC.

“It has been custom-engineered and tested under Australian conditions and has proven both its safety and capability required for a staged deployment across the wider national interstate rail network operated by ARTC,” said McCormack.

“The system is in the final stage of being certified as the primary safe working system between Port Augusta and Whyalla with the next section for deployment to be between Tarcoola and Kalgoorlie from next year.”

The industry-government oversight group will provide industry engagement and agreement on the approach, roll-out, staging strategy, and funding for ATMS. In mid-2020 the group is expected to provide advice on the broader rollout of ATMS.

Chair of the Freight on Rail Group, which represents the nine major freight businesses involved in the oversight group, Dean Dalla Valle, said that the system will improve Australia’s rail freight network.

“ATMS will vastly improve rail safety by allowing freight trains to be remotely controlled during an emergency, including automatic braking, and boost efficiency of services on both dedicated freight lines and shared rail networks.

“ARTC has ensured industry was at the forefront of consultation over the ten years of development of the new technology and FORG will continue that collegiate-approach through this working group to help fast-track the roll-out of ATMS,” said Dalla Valle.

By allowing for more efficient use of the freight rail network, ATMS is expected to increase rail capacity, as well as reliability and safety.

“To help recover from the deep economic shocks of the coronavirus pandemic, Australia must embrace and leverage new and improved technologies throughout its national supply chains,” said Dalla Valle.

“Its home grown, state-of-the-art technology which our sector and the Australian people should be very proud of.”

Caroline Wilkie, CEO of the Australasian Railway Association (ARA), said that the group has been formed at the right time.

“The creation of the oversight group will bring significant industry knowledge to the table to guide this important next phase of the project.”

Finance Minister Mathias Cormann said that improvements to the rail network will deliver benefits for the wider community.

“A well-developed rail network will help better connect our regions with our cities, our ports and beyond, ensuring that Australian businesses can sell as many products and services as possible into markets around the world while also making sure that domestically we are in the strongest possible position,” said Cormann.

“Our government looks forward to engaging with industry to drive improvements and further strengthen our rail sector.”

The use of data in digital rail

Nuno Guerra, who is leading Thales Australia’s Metro agenda, explains how the implementation of digital rail systems can benefit a network operator.

Australia’s major cities are growing at an exponential rate, and pressure is being placed on infrastructure and transportation services to improve operational efficiencies and the passenger experience. A digital revolution in smart-mobility is already occurring, allowing town planners to manage and capitalise on these pressures. Rail infrastructure will play a central role in this revolution, with disruptive technology enablers such as artificial intelligence (AI), big data analytics, the industrial internet of things (IIoT), and cloud computing driving its transformation.

In Australia, both Sydney and Melbourne are at the forefront of the rail revolution: Sydney announced the North West Metro in 2008 and the new CBD and South East sections of its Light Rail in 2014. Both projects are now complete and open to the public. Similarly, Melbourne has announced its Melbourne Airport Rail Link – a critical connection between Tullamarine Airport, the metro, and regional networks – and the Suburban Rail Loop, both scheduled to begin construction in 2022.

Rail networks are awash with data and, with projects like those we are seeing in Sydney and Melbourne, the potential for utilisation is immense. Though there are many assets that incorporate and utilise digital technologies, only a fraction of this data is captured and analysed to generate actionable insights and improvements for customers and efficiencies for operators. There is potential for operators to boost revenue by as much as 30 per cent by implementing data-driven decision-making capability into their networks.

COMPETITION
When comparing the rail sector to the likes of road transportation, there has been an explosive growth of ride sharing apps and online booking platforms. The roads sector has successfully leveraged data and used technology to connect directly with the customer and as a result built a competitive edge. The rail sector, by comparison, has not capitalised on data at the same pace. However, the rail industry is at the threshold of a major transformation in this data revolution. The benefits of rail travel to the community are hard to dispute, with each passenger journey made by rail rather than road generating benefits for society of between $3.88 and $10.64 by reducing congestion, accidents, and carbon costs, according to the Value of Rail report produced by Deloitte Access Economics for the Australasian Railway Association.

WHAT ARE THE MAIN DIGITISATION AND SMART-MOBILITY PRIORITIES?
The keys to success when it comes to digital revolution and smart-mobility, which are at the forefront of Thales’s development roadmap are safety and security, efficiency, and reliability. These shape our thinking in terms of what we aim to achieve in a smart network and address the five key digitisation priorities that are outlined below.

First and foremost, improvements in safety and security are paramount – Thales’s safety and mission critical systems such as signalling and supervision & control systems are digital and cyber secured by design by default, providing real-time data on congestion, occupancy, and security.

In relation to cyber-security, the digital railway presents a special challenge to traditional security measures due the deployed nature of the assets and their susceptibility to hackers. Thales has tackled these issues using a two-technology approach – traditional IT network security and ‘edge’ security (referring to devices deployed in the field). Thales Cybersecure by Design services focus on early threat detection and segmented networks to limit the access of direct connections outside the network. The ‘edge’ devices that make up the IIoT are manufactured under stringent security guidelines to ensure access points are not exploited, and reduce the risk of counterfeits and clones. Through limiting and securing access to these geographically scattered devices, organisations are also able to maintain tighter control and lower device maintenance and update costs. These technologies give operators confidence that their data and operations are safely expandable and secure.

The second priority is reducing maintenance and operational expenditure. Unplanned shutdowns are a major problem for operators, accounting for hundreds of millions of lost revenue per year. Research has shown that the top cause of unreliability is external problems, followed by signalling and train issues. To counter this challenge, we can tap into existing data sources such as Communications-Based Train Control (CBTC) systems, axle counters and point machines and use big data analytics algorithms to detect abnormal behaviour and predict maintenance requirements. This is the primary function of Thales’ digital TIRIS solution – processing hundreds of terabytes of data to monitor, in real-time, equipment installed on-board trains and along thousands of kilometres of track. The aim is a zero unplanned maintenance approach and customers have seen maintenance costs reduced by 30 per cent, site visits down by 50 per cent and overall downtime reduced by 40 per cent.

Thirdly, digital systems must help increase capacity. Data on passenger journeys, train occupancy, and platform crowding has enormous potential when taken in isolation, however, when combined and processed using big data analytics and AI, greater potential can be unlocked. The Thales NAIA solution processes passenger data in near- real time, allowing operators to discover and predict passenger behaviours, detect friction points in traffic flow and adapt staff and train services according to passenger demand. The flow-on benefits to train occupancy and capacity will have a distinct improvement on operational efficiency and customer satisfaction.

Asset availability presents the fourth priority. The ability to manage mobility across an entire city, and ensure availably and reliability of assets to meet passenger and freight demands is a critical challenge. Network visibility and real-time asset management enables more effective tools to manage this challenge. Multimodal Operation Control Centres (OCCs) provide these tools by tapping into multiple data sources and the industrial internet of things to create an ‘intelligent infrastructure’. Creating a dynamic visualisation of digitised assets across the network, enhancements to traditional systems such as signalling and interlocking systems will feed into this framework, exceeding current capabilities to increase frequency of operations and reduce delays.

Finally, digitisation must improve the passenger experience. As evidenced above, these modular digital solutions will combine to benefit the passenger in many ways. Ready access to comprehensive data will enable operators to make informed decisions on operations and maintenance to better manage passenger flow, train occupancy and wait times. Similarly, the passenger will benefit directly by more accurate and real-time information on congestion and delays. The Thales Central Control System (CCS), recently delivered on the Sydney Metro North West, is already providing this real-time information.

These disruptive technology enablers mean big change for the rail sector in Australia, and a leap forward for the smart-city architecture that is revolutionising our cities. Thales is at the forefront of this digital revolution, combining our global expertise in ground transformation with our data-driven digital service solutions to provide end-to- end solutions for our customers.

digital rail

The digital rail revolution

As one of the leading providers of digital technology in the digital rail sector, Mark Coxon of Alstom explains what changes rail can expect to see in its digital future.

Since the beginning of the modern era, rail has been closely connected to each major industrial innovation. Initially, in the first industrial revolution, the use of steam to textile mills was almost as iconic as the steam-powered train engine, which became the symbol of increased productivity and modernisation during the 19th century.

In the next era, the adoption of hydrocarbons as a source for fuel also enabled the diesel train, able to haul large loads for transcontinental journeys. Simultaneously, widespread electrification and the urbanisation of worldwide populations saw the adoption of electric, underground metro services that have kept crowded cities moving. Now, as the information revolution looks to set to be the next defining wave of innovation, train technology is leading the way in innovation.

Alstom is one of the early adopters of the digital wave in rail, and indeed has become one of the drivers. The significance of this shift is not lost on Mark Coxon, managing director of Alstom Australian and New Zealand.

“Digital Railways doesn’t have quite the romantic ring of the great train services of the past – the Orient Express, the Canadian Pacific or the Trans-Siberian. But digital is the next big wave in the railway sector, and train users can look forward to higher service standards, more timely information and even better ticket pricing,” he said.

The two primary technologies that have come to define digital rail are digital train control and digital signalling. Although there is an array of other technologies, according to Coxon, these tools will have a fundamental impact on the evolution of rail during the current industrial revolution.

“Digital signalling and digital technologies in general will have a huge influence on the evolution of rail services. They are just the latest developments in an industry that has a great track record (pun intended) of technological innovation. From steam to diesel to electric power, the railroad’s evolving technologies have unleashed economic potential and social mobility wherever the rails were laid.”

Indeed, the new technologies exist in order to improve the usefulness of rail networks, rather than being a cosmetic add on.

“Today we are entering an age where digitalisation allows operators to have real- time information on train movements and analyse overall performance – ultimately reducing costs by streamlining processes and improving efficiency and reliability,” Coxon said.

UNLOCKING THE URBAN
For many cities, including Australia’s urban centres, the efficiencies promised by digital rail could not come soon enough. Traditional signalling systems have reached the end of their useful life, while patronage continues to increase. Additionally, building new rail lines through cities is often not an option, and tunnelling underneath poses significant cost challenges. This has put pressure on existing technology, said Coxon.

“Railways have been part of the urban landscape for so long that networks in many countries have become extremely dense, especially on commuter lines in major cities, making it difficult and costly to implement major upgrading projects. Instead, the kind of improvements in efficiency that digital technology excels at can have massive operational impacts.”

Digital rail can also extend to find connections with other forms of transport, across heavy rail, metro, light rail and also bus and micro-mobility networks. Finding these efficiencies in the digital ecosystem can deliver major benefits to transport and city planners.

“Digital technologies hold out the promise of true transport integration, linking main-line rail services with other urban transportation modes, enhancing efficiency and passenger convenience,” said Coxon. “The introduction of Information and Communications Technologies (ICT), Intelligent Transport Systems and open- data/open-source transport applications are transforming urban transportation, optimising the efficiency of existing and new urban transport systems, at a cost much lower than building new infrastructure from the ground up.”

Within the railways themselves, the enhanced data and feedback gathered by digital sensors form a connected railway that can reduce costs and improve service delivery.

“New transport data collection technologies are also being deployed to provide information about delays, downtime, and predictive maintenance which could lead to huge improvements in service standards, safety, and unlocking the potential of railways. Passengers will also be able to make real-time decisions about their journeys based on the features that matter most to them such as reliability, safety, travel time, and cost,” said Coxon.

In addition, as governments and individuals increasingly identify a project’s sustainability as a key factor, adopting the digitalisation
of railways can enable railway operators to reduce energy usage, improving air quality, while also delivering a seamless experience for the commuter.

“Enhanced safety, predictive maintenance, and automated driverless operation are all part of rail’s future,” said Coxon.

PUTTING THE PASSENGER FIRST
Perhaps an even more fundamental shift will be occurring in the way that passengers interact with transport. Currently divided into discrete journeys often limited by transport mode, a connected digital railway can enable the rise of Mobility as a Service (MaaS). Via data-enabled apps, commuters can move through transit modes made as one seamless trip, with real- time information to smoothen the transition.

“From the passenger’s perspective, access through online apps to real-time information on travel times, potential service interruptions, ticket prices, seating arrangements and even on the least crowded places to wait on a station platform, will enhance convenience and reduce the stress of travel,” said Coxon.

Reducing disruptions also enables transit time to fit into the other rhythms of daily life, with enhanced services available onboard.

“Railways today offer a connected service all along the passenger journey with on-board Wi-Fi for internet and entertainment options. Passengers are able to experience these services using their own mobile devices –laptops, tablets and smartphones,” said Coxon. “This approach to train connectivity can unquestionably deliver a significantly improved passenger experience.”

These developments occur as part of a strategy of putting the individual first, rather than forcing the individual to comply with the requirements of the service.

SEIZING THE DIGITAL FUTURE
However, just as digital rail offers solutions, there are challenges too, as Coxon acknowledges.

“The path to digitalisation will not, of course, be entirely smooth.”

The benefits of digital rail require collaboration and coordination between companies, agencies, and organisations that have up until now existed in their own silos, with limited interaction. In addition, the skills and knowledge that is required to build and run a digital rail system is quite different to those needed in an analogue rail environment, although Coxon notes that these changes could have their own benefits.

“Despite the challenges, the railway sector’s move to digitalisation is clearly unstoppable. Digital technology in the railway sector will see a shift from the traditional emphasis on heavy engineering, to software and data handling skills. In the future, once the hardware is installed, upgrading a signalling system will no longer require hundreds of workers out on the tracks; it might be more like upgrading the software on your phone.”

Getting to this digitally enabled future may require some difficult transitioning, however through collaborating across industry lines, returns can be found.

“Rail operators should take this digitalisation opportunity to integrate different mobility options into their existing offering and consequently focus on value creation through innovation,” said Coxon.

“Without a doubt, it is the quiet efficiency of digital technology that will take rail systems and their passengers into a new age of rail travel that is safer, more convenient and comfortable, more economical, and more climate-friendly.”

Sentinel Safety

Sentinel Safety brings the latest AI technology to protect pedestrians in the rail industry

The risk of injury and near misses for workers around mobile plant and machinery is always a concern during the construction and maintenance of railways where separation of people and plant is not possible. To date, most hazard prevention technologies involve a tag-based system or administrative controls which are not always the most comprehensive solution to the dynamic rail maintenance and construction environment.

Developed over three years by an in-house team of Brisbane-based engineers, PRM Engineering Services have produced the Sentinel Vision A.I. pedestrian detection system, for the specific safety requirements of the rail industry. The system uses the latest in artificial intelligence and pedestrian recognition to detect when a pedestrian is in a machine’s blind spots or enters hazardous zones near mobile machinery, warning both the operator and the pedestrian.

Working in real-time, the Sentinel Vision A.I. system incorporates multiple cameras, that are mounted to mobile machines such as wheel loaders, excavators, and on-track vehicles with as many or as few cameras installed as needed to cover blind spots and assist the operator in identifying people around the machine. Sentinel Vision A.I. is the first pedestrian detection system to alert both the operator and pedestrian. This innovation has been found to cause long-term behavioural change in pedestrians working around mobile plant and machinery. Sentinel Vision A.I. uses a unique voice alarm system to ‘talk’ to the pedestrian, cutting through the beeps and buzzes that that workers hear on sites every day.

The system has been trialled by several top tier rail authorities with positive results and many have reported that when people are alerted by the voice alarm, behavioural change and greater awareness of risky behaviour around mobile plant is achieved. Ideally, over time, Sentinel Vision A.I. will be activated less as people have learnt not to walk in front or behind active vehicles, reducing the risk of accidents and injuries.

The system takes images from the detection cameras and then processes the information through an A.I. neural network to determine if there is anything that looks like a person, or part of a person, and if there is, it triggers internal and external alarms. Detection zones are customisable and determined with an easy to use drag and drop interface, and an additional option of pre-warning zones.  The system has been trialled and used in a range of different operating environments and environmental conditions with positive feedback.

Sentinel Vision A.I. is one of a number of innovative products developed by PRM Engineering Services. Part of the PRM Group of companies, which has been providing safety systems and equipment to the rail industry for over 20 years, PRM Engineering Services designs bespoke safety and control systems that meet the unique needs of operators. Through our partnerships and experience gained in the rail and heavy machinery industries, PRM Engineering Services’ range of Sentinel Safety systems were developed to meet the changing safety and risk management requirements of rail authorities.

The Sentinel Safety range also includes several Height and Slew limiters used throughout the rail and construction industries to allow safe operation around powerlines and within confined spaces. The Sentinel Height and Slew limiters have been used by rail authorities Australia wide for a several years and can be retrofitted to any machine with articulated booms.

Based on this experience PRM has also recently released additional optional features including HV detection and RFID for attachment recognition. By combining the functionality of our widely used Sentinel Height and Slew limiters with a patented Sentinel HV Aerial Module, the system can ensure safe operation around powerlines from the moment the machine is turned on. The system prevents the machine moving within the exclusion zone around powerlines and motion-cut valving prevents the machine from moving closer while allowing the operator to direct the machine away from the electricity source.

The Sentinel Height and Slew limiters are perfect for the safe operation of excavators, loaders, skid steers and backhoes when working under overhead powerlines, in and around bridges and inside tunnels and can be installed on new and old machines alike. The Sentinel Height and Slew limiters also have are range of rail specific systems to the meet the machine safety requirements of multiple rail authorities and councils.

PRM Engineering Services are passionate about safety and have a long-standing heritage of safety system design and installation since 2002. With experience in the rail and earthmoving industries, PRM Engineering Services have become integrators and developers of a number of unique safety and control systems that meet customer requirements. These projects have ranged in scope from customisations of height or slew systems through to full redesign of control systems for on-track rail vehicles. Along with our team of talented engineers, the PRM Group of companies can also assist with the installation or modification of electrical, hydraulic, and control systems for heavy machinery, enabling PRM Engineering Services to offer end-to end innovative and customised solutions to our wide range of customers.

Find out more at: https://www.sentinelsafety.com.au/.